Friday, December 19, 2008

Winter is here, and for cars and trucks it is no "Wonderland" - Part III

In my last two blog posts, I've talked about the crippling effect winter can have on auto and truck transportation. As you know from those entries, I propose the Aeroduct System of air cushion vehicles in elevated lightweight guideways as the ideal transportation system, during the winter and the rest of the year.

Now I will address attempts to improve the performance of wheel based vehicles in bad weather. Many intelligent efforts are being made in that direction. Overall, my response is that those efforts will be highly expensive, highly complicated but with low results. Here are some specifics.

Some efforts are being directed at improved sensing devices for the roads. An article in the October/November issue of Traffic Technology International by Melanie Scott talks about the latest devices that can count cars and also detect pavement temperature and moisture. This information is passed on to traffic control officials, and can aid them in determining road conditions. Presumably, this same information could be passed on to drivers, also letting them know road conditions ahead. This is all part of the hoped for intelligent driving of the future.

Bad weather magnifies driver error, and even more informed drivers could still make mistakes, in part due to the tendency to travel as fast as one wants regardless of weather conditions, instead of as fast as is reasonable under those conditions. The recognition of the relationship between driver error and accidents has prompted the many ongoing efforts to design cars and road systems that take the driver out of the picture, by completely automating cars and trucks. These efforts are summarized by Ryan D. Lamm in his article "Driven to It", published in the November/December, 2008 edition of Thinking Highways North America.

I commented on Mr. Lamm's article in an earlier blogpost. I'll reiterate here that no automation of wheel based vehicles and no sensing of road conditions will have as important an impact on creating ideal transportation as will the replacement of wheeled vehicles and roads with the Aeroduct System. Reducing accidents with better knowledge of road conditions and steps towards automating driver functions are steps in the right direction. But, complete automation of automobiles is a very big challenge, and I don't think it will ever happen, even with thousands of dollars of sensing and communication devices added to cars and trucks. A car or truck travels in a flat plane where other vehicles and pedestrians and animals can be in any direction, under many different weather situations. Computer sensing and reaction to all that will be extremely complicated. So, in the future. drivers will still influence the control of cars, and driver error will still be a factor, even if reduced some by technology.

Even more challenging to those who want to continue our current wheel based transportation system is that no amount of sensing and no steps towards automated cars will improve icy and snowy roads. Traffic accidents might decline, which would be a good thing, but road conditions will still be bad, and travel will still slow down greatly. The bane of winter weather for everyone is the inconvenience of increased travel time. And, all that salt and sand will still need to be dumped onto roads to make them passable at all. Only a transportation system immune to bad weather is really ideal. Only a transportation system that can be automated far less expensively than cars/trucks/roads and does not need enormous amounts of salt and sand each winter is ideal. That is why I say the Aeroduct System is the transportation modality of the future.

To those parts of the country where snowstorms and ice storms cause no end of problems each winter, I invite you to contact Aeromobile Inc. to talk to us. The population shift away from colder areas to warmer has many causes, but one of them has to be the desire to get away from the dangerous and slow travel conditions faced for three or four months each year.

No comments: