Monday, May 26, 2008

Arc Wing Versus Planar Wing

In the June 2008 edition of Flying Magazine, noted aviation expert and writer Peter Garrison writes about the forces associated with airplane lift in a very interesting article titled "The Bernouilli Brigade". He discusses at length why the lift possible from a wing is less than one would think. Here is some of what he says:
"The pressure difference between upper and lower surfaces causes spillage at the tips - this is the reason for the tip vortex - and robs the wing of 5 to 10 percent of its theoretical lift. Another loss occurs at the center of the wing where the fuselage interrupts air flow. The imaginary portion of the wing that lies within the - reported wing area includes this hidden part - produces in reality, no lift. But changes in the pressure are gradual, not instantaneous, and so the effect of the fuselage is to produce a dip rather than a sharp-edged gap in the spanwise distribution of lift. Depending on the fraction of the wing that lies within the fuselage, another 10 or 15 percent of potential lift may be lost here."
He also refers to the losses from the tips of the non-spanwise flaps.

His article deals with the loss of lift of the straight or planar wing. At Aeromobile Inc., we think our arc wing obviates several of these losses. In my previous blog entry, called "A Wing that Really Lifts", I list all the reasons the arc wing has superior lift to the planar wing. Here I will just mention a few:
  1. The arc wing has inherent "winglets" and minimal tip vortices to reduce that 5 to 10 percent of lift of the straight wing.
  2. There is no fuselage interrupting the arc wing span. The fuselage is under the arc wing saving a additional 10 or 15 percent of wing lift.
  3. Taken together, the theoretical saving of the arc wing over the straight wing without the fuselage interrupting may be as much as 10 to 25 percent.

No comments: